
The influence of hopping on valence transitions in the Falicov-Kimball model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 3001

(http://iopscience.iop.org/0953-8984/7/15/007)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 12:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/15
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


~ ~ I. Phys.: Candens. Matter 7 (1995) 3001-3012. Printed in the UK 

The influence of hopping on valence transitions in the 
Falicov-Kimball model 

Pavol FarkaSovskf 
Institute of Experimental Physics, Slovak Academy of Sciences. Watsonova 47. 043 53 
KoSice. Slovakia 

Received 8 December 1994, in final form 25 January 1995 

Abslract We use strong-coupling perturbation theory and the extrapolation of small- 
cluster exact-diagonalization calculations to describe the ground-state properties and possible 
intermediate-valence transitions of the spinless Falicov-Kimball model with a genedized type 
of hopping. It is shown that. even for relatively small values of the interaction smngth, the 
Falicov-Kimball model undergoes only a few (discrete) intermediatevalence tmsitions, and 
this result is demonsmed to be independent of finite-size effects. 

1. Introduction 

Since its introduction in 1969, the Falicov-Kimball model [l] has become an important 
standard model for a description of correlated fermions on a lattice. The model describes 
a two-band system of localized f electrons and itinerant d electrons with a short-range f-d 
Coulomb interaction U. The Hamiltonian is 

H = ti,d:dj + U &+hd,?d; + Er J-+h (1) 
i j  i 

where A+, fi are the creation and annihilation operators for'an electron in a localized state 
at lattice site i with binding energy Er, and d:, d, are the creation and annihilation operators 
for an electron in the conduction band. The conduction band is generated by the hopping 
matrix elements f t j ,  which describe intersite transitions between the sites i and j .  Usually it 
is assumed that -t;j = --t if i and j are nearest neighbours and t;j = 0 otherwise; however, 
in what follows we consider a much more realistic type of hopping, so for the moment we 
leave it to be arbitrary. 

Although the model has various physical interpretations (as well as the aforementioned 
interpretation it can be considered as a model for crystallization in a system of classical ions 
interacting with itinerant electrons 121, or as an approximation to the Hubbard model [3] 
in which only one kind of electron can hop), there exist two fundamental questions that 
have attracted the attention of physicists. The first is the nature of the ground state of the 
model and its energetic and structural properties. The second is the problem of metd- 
insulator and valence transitions in the spinless Falicov-Kimball model. In spite of its 
relative simplicity, so far only a few rigorous results concerning the ground state of the 
Hamiltonian (1) have been obtained: Brandt and Schmidt [4] found sharp upper and lower 
bounds for the ground-state energy in two dimensions; Kennedy and Lieb [2] proved that 
the ground state has long-range order for all dimensions d ;  Brandt and Mielsch [5] obtained 
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an exact solution in d = 03; Gruber [6] and Lyzwa [7] derived some rigorous results for 
a particular class of periodic configurations; Lemberger [SI proved two exact theorems in 
the limit of strong interactions; Gruber and co-workers [Q] obtained a set of exact results 
pertaining to the neutral case, showing that the system forms atoms at sufficiently large (I. 

The second question, namely whether the Falicov-Kimball model can describe the 
discontinuous transition of the f-electron occupation number nt as a function of the f-level 
energy Er, is crucial for an understanding of some anomalous physical properties of rare- 
earth compounds. For example, supposing that the external pressure shifts the energy level 
Er, then the valence transitions observed in some rare-earth compounds (SmS, TmTe, and 
so on) could be understandable purely electronically if nt (E)  really has discontinuities. 
However, whether discontinuous valence transitions appear for the Falicov-Kimball model 
is again very sensitive to the approximations used. 

Depending on the type of approximation used, both positive answers [ 1,10-12] and 
negative answers [ 13-15] were found. Discontinuous transitions were obtained within 
Hartree-Fock treatments if the intra-atomic interaction term was decoupled in a form that 
was diagonal in the f and d creation and annihilation operators, while in much more reliable 
treatments based on the coherent-potential approximation no sign of any discontinuity 
was obtained. Thus, within the Hamee-Fock treatments, the Falicov-Kimball model can 
describe the first-order transition from nr = 1 to n f  = 0; however the valence, i.e. the 
number of localized f electrons nt, remains an integer and does not attain intermediate values. 
Although this shortcoming can be removed by including the hybridization of localized states 
with the band states, the theoretical picture of the transitions is still uncertain, since different 
approximations again produce controversial results [16-221. From this short survey it  is 
clear that the study of vdence and metal-insulator transitions may be successful only with 
methods that are relatively insensitive to the type of approximation used and, of course, 
with the exact methods. 

Exact results concerning this question are rare. The numerical calculations of Brandt and 
Schmidt 141 based on Tchebycheff-Markov inequalities show (d = 2) that for E < E ,  the 
ground state of the model is the fully occupied lattice (nr = 1, I Z ~  = 0). For Ez c E < E3 
the ground state is a chessboard configuration ( n f  = 112, lid = 112) and for E z E4 the 
ground state is the empty lattice (nr = 0, nd = I). Unfortunately, the authors are unable to 
decide whether or not the valence transitions from nr = 1 to nr = 112 and from nr = 1 f 2  
to nr = 0 are discontinuous. 

To resolve this problem, in a previous paper [23] we used strong-coupling perturbation 
theory and the extrapolation of small-cluster exact-diagonalization calculations. We found 
that in the general case the transitions have a staircase structure. With increasing U 
this structure is maximally simplified, and only a few transitions become relevant. For 
5 < U < 10 there are only four relevant transitions: from nr = 1 to nt = 213, from 
nt = 213 to nr = 112, from nr = 112 to nr = 113 and from nr = 113 to nf = 0. For 
U t 10 there are only two relevant transitions: from nf = 1 to nr = 112 and from nr = 112 
to nf = 0. 

In the present paper the same methods are used for an investigation of the band effects 
(the type of hopping) on the valence transitions and ground-state properties of the model. 

To study this subject we choose a more general form for the hopping matrix elements, 
namely 

(2) t.. - - ~ g ( ~ / ~ ) - l l ~ - J l - ( ~ / ~ ) l - ~ ( l  - aij) 
r l  - 

where L denotes the number of lattice sites and g < 1 .  
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There are several advantages of this form. It represents a much more realistic type 
of hopping electrons on a lattice, and it allows us to change continuously the type of 
hopping (band) from nearest-neighbour (q  = 0) to infinite-range (q = 1) [U] hopping and 
thus immediately study the effect of the conduction band on the physical propelties of the 
model, particularly on the ground-state configuration and on the valence transitions, which 
have been the subject of much controversy [21]. 

Since in this spinless version of the Falicov-Kimball model without hybridization the 
f-electron occupation number f:fi of each site i commutes with the Hamiltonian (1). the 
f-electron occupation number is a good quantum number, taking only two values: wi = 1 
or 0, according to whether or not the site i is occupied by the localized f electron. 

Thus the Hamiltonian (1) can be written as 

H = hijdTdj + Ef W ;  
i.1 

(3) 

where hi j (w)  = tij + Uwi& and 4 ,  are given by (2). The investigation of (3) is now 
reduced to the investigation of the spectrum of h for different f-electron configurations. 

2. Perturbative analysis 

A previous paper [25] devoted to the investigation of the ground-state properties of the 
Falicov-Kimball model (q = 0) showed that the strong-coupling perturbation theory of 
degenerate levels is capable of closely reproducing the exact results of Freericks and 
Falicov [26] (obtained for the particular class of periodic configurations), even for relatively 
small values of the interaction strength, U f t  > 5. Therefore, to reveal a qualitative picture 
of the valence transitions, we start with the strong-coupling limit of (3) and with perturbation 
theory of degenerate levels. 

We can see that for a given f-electron configuration w = ( w l ,  w 2 .  . . w r ] .  defined on a 
one-dimensional lattice of L sites with periodic boundary conditions, the e s t  term of (3) 
is the second-quantized version of the single-particle Hamiltonian h = T + UW. where 
T is the L-square mahix with elements tij given by (2) and W is the L-square diagonal 
matrix with elements wi (xi wj = Nf is the number o f f  electrons). Since the matrix W 
is idempotent, the matrix U W has only two eigenvalues E ,  = 0 and E2 = U, which are 
( L  - Nf)-fold and Npfold degenerate. Considering now the interaction energy UW of the 
Hamiltonian (3) as the unperturbed Hamiltonian and the kinetic energy as the perturbation, 
then the second-order corrections can be found directly using the standard perturbation 
theory of degenerate levels [23,25]. For E1 = 0 and E2 = U its application leads to the 
following secular equation: 

det(T(*) - U )  = 0. (4) 

Here T(-) and T(+) are ( L  - Nf) and Nf square matrices with elements 

where n and n' denote unoccupied (occupied) sites if the second-order corrections to the 
energy level El = 0 (E2 = U )  are calculated. 
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However using the theorem of Gersgorin [27], one can find that the electron spectra 
arising from the degenerate energy levels E1 = 0 and E2 = U form, for U > Cl0 = 
4/[(1 -q2)U], two non-overlapping bands with exactly ( L  - Nr) and N f  states and thus the 
energy of N,j = L- N f  electrons at the half-filled band point N f +  Nd = L (next we consider 
only this case, which is the point of special interest for mixed-valence phenomena) can be 
obtained directly by occupying all ( L  - N f )  energy levels Ak corresponding to El = 0, or 
in other words by taking the trace of T(-): 

Now using (5). the total energy corresponding to any configuration w = [ w l ,  w 2 . .  . w L ]  
with total f-electron number Nr can be written as 

A straightforward analysis of (7) shows that, just as for q = 0 [8], for q > 0 the 
most homogeneous configurations are the ground states of the Falicov-Kimball model for 
sufficiently large U. This is obviously a consequence of the chosen form of the hopping 
matrix elements, which as one can immediately check for NI = 2 , 3  , . , forces the f electrons 
to be as separated as possible. Using this result we can directly study the valence transitions 
in the spinless Falicov-Kimball model at large U. However, before doing this, let us first 
investigate the model for small lattices to show that the most homogeneous configurations 
play a central role in valence transitions, not only for large U but also for relatively small 
values of U. 

3. Numerical calculations 

With regard to the aforementioned sensitivity of the valence and metal-insulator transitions 
to the type of approximation employed, we used for their description the extrapolation of 
small-cluster exact-diagonalization calculations. Since the d electrons do not interact among 
themselves, the numerical calculations proceed directly in the following steps. (i) Having 
U, Er, q and w = { w ~ ,  w 2 . .  . W L ]  fixed, find all eigenvalues A t  of h(w) = T + U W .  (ii) For 
a given Nr = xi wi determine the ground-state energy E ( w ,  U. Er) = Ak + E& 
of a particular f-electron configuration w by filling in the lowest Nd = L - Nr one-electron 
levels. (iii) Find the wo for which E ( w ,  U. Er) has a minimum. 

Repeating this procedure for different values of U or Er, one can immediately study 
the dependence of the f-electron occupation number Nr = x, wp on U, Er or q. 

To demonstrate the influence of electron hopping on the valence transitions we start 
with the simplest case: (I = 0. The numerical results obtained for finite systems are shown 
in figures 1 and 2. In figure 1 the Etdependence of the f-electron occupation density nr is 
plotted for L = 512 sites and different values of q. whereas figure 2 illustrates the finite-size 
effect on the beginning (end) of transitions. The results show that (i) with q going from 0 
to 1 the transition becomes much steeper, and even for the infinite-range hopping (q = 1) 
it is discontinuous, in agreement with analytical results [24]; (ii) only a behaviour with 
q = 0 (reflecting the particle-hole symmehy of the model) is point-symmetrical around 
nr(Er = 0) = 0.5; (iii) the beginning (end) of the transition is almost independent of L .  
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Figure 1. The dependence of the f-electmn occupation number nf on the f-level position Er 
calculated for L = 512, U = 0 and six differen1 values of q 
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~ i g a r e  2. The L-dependence of the exaa numerid bounds of the fully occupied (Ed) and 
completely empty (E.) lattice calculated for U = 0 and (U) q = 0. (6) 9 = 0.1, (c) 9 = 0.3, 
(d )  q = 0.5 and (e) 9 = 0.7. 

The last observation is very important for the extrapolation of small-cluster exact- 
diagonalization calculations, since it indicates that at least some characteristics of the 
transitions are independent of L .  However, from a theoretical point of view, the first 
observation showing the possibility of discontinuous valence transitions is also very 
interesting. 

Let us now incorporate many-body effects and study the model for non-zero U. The 
results obtained for small finite systems of L = 12 and 20 sites, and for the set of the 
interaction strengths U = 1.5,3,4.5, are presented in tables 1 and 2 and in figures 3 and 4 
(here and in what follows all energies are measured in units o f t ) .  

We summarize these results with some observations. (i) For q = 0.1 and the given set of 
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Table 1. Ground-state configurations far L = 12, U = 3 and q = O.I.O.3,0.5,0.7, 

Nf 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

- 0 = 0.1 

owooooW00o 
100 000000 WO 
1W000100000 
l O O O l O 0 0 l o o o  
looloolool00 
100 101 001 010 
101010101010 
101011 010 110 
110 I l O l l O  110 
l l l O l l l O l l l 0  
111 110111 110 
111 111 111 110 
111111111111 

q = 0.3 q = 0.5 q = 0.7 

100 000 000 000 100 OW 000 000 100 000 wo 000 
101000000ooo 101~000W0 100100000000 
101010000000 101010000000 l000l000l000 
lolololooo00 101010100000 looloolool00 
101010101000 101010101000 loolololoolo 
101010101010 101010101010 lolololololo 
ll0l0l011010 110 110101 010 110 110 101 010 
110 110110 110 110110110110 110 110110 110 
111011101 110 l l lOl l101110 111011 101 110 
l l l l l O l l l 1 1 0  I l l l l O I l l l l O  l l l l l O l l l l 1 0  
111 111 111 110 111 111  111 110 111 111  I 1 1  110 
l l l l l l l l l l l l  111111111111 1 1 1 1 1 1 1 1 1 1 1 1  

000 000 000 000 ' 000 000 000 WO 000 000 000 000 

Table Z Ground-state configurations for L = 20, U = 3 and q = 0.3,0.7 

NI q =0.3 p = 0.7 

0 00 000 000 000 000 000 000 
1 10 000 000 WO 000 000 WO 
2 IO 100 OOOOW 000000000 l00l0000 000000000000 
3 IO 101000000000W0000 10010010000000000000 
4 10101010000000000000 l00l00l00l0000000000 
5 10101010l000000W000 looloolooloolooooooo 
6 10101010101000W0000 l O O l O O l O O l O O l O O l O O O O  
7 10101010101010w0000 10010100100100100100 
8 10101010101010100000 loolololololoolool00 
9 10101 010101010101000 10010 101 010 101 010100 

10 10101010101010101010 10 101010101010101010 
11 I 1  010101010 110101 010 I I  01 1010 101 ololololo 

00 ow WO 000 000 WO 000 
IO OW WO 000 WO ow 000 

12 11010 110 101 101011010 
13 I I  011 011 011 011 011 010 
14 l l l O l l O l l O l l l O l l O l l 0  
15 l l l O l l l O l l l O l l l O l l l 0  
16 I 1  110 111 101 111 011 110 
17 I 1  111  IO1 111 110 I I 1  110 
18 11111111101111111110 
19 1111l111111111111110 
20 11111111111111111111 

11011 011010101010 110 
1 1  01 I O 1  IO11 011 01 I010 
I I  101 110110110110110 
I 1  101 110111011 101 110 
11110111101111011110 

11111111101111111110 
11111111111111111110 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

11 IIIOII III in1 I I I  1 1 0  

U, the ground-state configurations of the Falicov-Kimball model are the most homogeneous 
configurations. This means that the most homogeneous distribution of the f electrons, first 
found by Lemberger [8], for q = 0 and sufficiently large U persists for small but non-zero 
values of q. (ii) For larger values of q the mixture of two crenel configurations [plm] 
may be the ground state. (The unit cell of the crenel configuration [plm] consists of p 
consecutive sites occupied by the f electrons, while m - p sites are empty.) Whereas 
for np < 112 the mixtures of the crenel configurations [Ilm] with m = 2,3.. . and the 
empty configuration appear most often, for nf > 112 it is the mixture of [ p l p  + 11 and 
[ p  - llp] crenel configurations. (ii) The alternating phase (1010 ...) is the ground state 
at nf = 112 for all values of U and q. The very existence of this intermediate-valence 
state with a chessboard shllcture is an important characteristic of the valence transitions, 
since it appears for each transition and the region of its stability is almost independent of 
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k 4 . 5  

Et 
3 

12 

Nr 6 

- u=1.5 ........ 

Et 

12 

q=0.7 
Nr 6 

. ....... 

Ef 
Figure 3. The dependence of L e  F-electron occupation number Nt (calculated for all 
configurations) on the f-level position Ef For L = 12, U = 1.5.3.4.5, and q = 0.1,0.3,0.5,0.7. 

L .  As follows from the preceding figures, the same is true for the beginning (end) of the 
transitions. (We will discuss more accurate finite-size effects on these quantities below). 
(iv) The valence transitions have, in general, a staircase structure, which strongly depends 
on U and q.  However, with increasing U and q this sfmcture is maximally simplified and 
for sufficiently large U or 4 only a few transitions become relevant. For example, while for 
q = 0.1 and the given set of U there are several transitions from nr = 1/2 to nf = 0, for 
q = 0.5 there is only one relevant transition independent of L and U .  Furthermore, with 
increasing q the transitions are much steeper, the region of stability of the intermediate- 
valence state with chessboard structure being gradually suppressed, and unlike the case of 
small values of q a direct transition from nf = 0 to nf > 112 is possible for 4 z 0.9. (v) 
There exist several characteristics of the valence transitions that are independent, or almost 
independent, of L. As well as the characteristics mentioned above, i.e. the beginning (end) 
of the transition, the region of stability of the intermediate-valence state with chessboard 
structure is also the length of stairs corresponding to configurations with nf = 1 - l / i  
( E < O ) o r n f = l / i  ( E z O ) , i = 1 , 2  ... L. 
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14 
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Figure 4. The dependence of the f-eklron occupation number NI (calculated for all 
configurations) on the f-level position Er for L = 20, U = 1 .5. 3.4.5 and q = 0. I ,  0.3,O.S. 0.7. 

To determine the finite-size effects more accurately, the L-dependence of the exact 
numerical bounds for the most interesting ground states, i.e. when (i) the lattice is completely 
filled with f electrons (yielding the value of the beginning of the valence transitions, Ed), (ii) 
it is completely empty (the end of the transition, E,) and (iii) it has a chessboard structure 
(4, Ea,), have been calculated. The results presented in figure 5 show that only for q -+ 1 
can a weak dependence of bounds on L be observed. This indicates that at least some 
characteristics of the valence transitions in the thermodynamic limit may be deduced from 
characteristics of the valence transitions of finite systems. However, for further investigation 
of the valence transitions the most important fact was that the valence transitions calculated 
only for the most homogeneous configurations are practically identical with these shown 
in figures 3 and 4. Negligible differences may be observed only if the calculations are 
done with a step AEr < 0.005. This fact indicates that the basic structure of the valence 
transitions can be described very precisely taking into account only the most homogeneous 
configurations, and at the same time it allows us to avoid technical difficulties associated 
with a large number of configurations and consequently to study much larger system. 
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.............................................. 
-1 ,5 .............................................. 

...................... ".....................e 
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Figure 5. The L-dependence of the exact numerical bounds of the fully occupied (Ed). 
completely empty (E, )  lattice and the chessboard configuration (E,, , Eaz) calculated for U = 3 
a n d ( a ) q = O , ( b ) q = 0 . 1 , ( c ) q = O . 3 , ( d ) q = O . S a n d ( e ) q = 0 . 7 .  

Figure 6 presents results obtained for a finite system of 240 sites. It is seen that all our 
observations made on small systems also hold for much larger systems, and even some 
features of the valence transitions are now more visible. For example. it. is evident that 
for all values of q the valence transitions have their own internal structure. The most 
homogeneous configurations with nr = 1 - l / i  ( E  < 0) or ni = l / i  ( E  z O), i = 1,2.. . L 
form the primary structure, depending on L only very weakly, while the remaining most 
homogeneous configurations form the secondary structure, which depends very strongly on 
L and U .  However, with increasing U (for fixed q )  the secondary structure is gradually 
suppressed and only the primary structure forms the transition. For sufficiently large U this 
structure is very simple and consists of a few relevant transitions, whose number can be 
further reduced by q. This means that in the pressure-induced case the spinless Falicov- 
Kimball model undergoes only a few (discrete) intermediate-valence transitions, namely 
the transitions from an integer-valence ground state into an inhomogeneous intermediate- 
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Figure 6. The dependence of the f-electmn occupation density nt (calculated for the most 
homogeneous configurations) on the f-level position Et for L = 240, U = 1.5,3.4.5 and 
q = 0.1, 0.3, 0.5 and 0.7. 

valence statet and the ransitions from one inhomogeneous intermediatevalence state into 
another inhomogeneous intermediate-valence state. The effect of q is particularly strong for 
nf < 0.5, where even for relatively small values of U the number of relevant transitions is 
reduced at sufficiently large q (q N 0.5) to one: from nt = 1/2 to 0 (see figures 3 and 4). 
Since the primary smcture is almost independent of finite-size effects we suppose that this 
picture of the valence transitions in the framework of the Falicov-Kimball model could be 
very close to the real one. 

It should be noted that our picture of valence emsitions based on the exact numerical 
calculations differs strongly from the picture obtained so far using various approximations. 
Whereas our results predict that the spinless Falicov-Kimball model undergoes a few 

t In the rare-earth community the concept of an ‘inhomogeneous intermediate-valence state’ is used to denote 
the static mixture of rare-earth ions with vatence n or n - I depending on the IatIice site. This is in contrast to 
the dynamical mixture (homogeneous mixed valence) when each cue-eanh site looks identic4 in a time average, 
while the local shte is best described by n at one time and n - 1 at another. To avoid a misunderstanding. these 
concepts should be carefully distinguished from the concept of the most homogeneous configuration. 
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(discrete) intermediate-valence transitions, approximate solutions lead to very controversial 
and unreliable results, showing one or even no discontinuous valence transitions. The only 
fully reliable result seem to be the exact result of Brandt and Schmidt [4], obtained using 
Tchebycheff-Markov inequalities, which in the region where the authors are able to give 
exact numerical bounds yields the same structure as our results for q --t 0. This indicates 
that for q --f 0 approximate methods are not particularly appropriate for a description of 
valence and metal-insulator transitions, since these are very sensitive to the approximation 
used. However some approximations, for example the coherent-potential approximation, can 
be successful in the opposite limit q -+ 1 when, as has been shown using exact analytical 
calculations [28], the coherent-potential approximation becomes exact for sufficiently small 
values of U .  Unfortunately, the limit q = 1 is not very realistic, since the entire kinetic 
energy of the system is now carried by one electron in the state k = 0, while the remaining 
electrons are immobile. 

Finally, it should be mentioned that the picture presented of valence transitions 
is considerably simplified, and in more detailed analyses one must consider higher 
dimensions, larger lattices, electron-phonon interactions, orbital dynamics as well as the 
d-f hybridization. Work on this object is in progress, and preliminary results show that 
the fundamental features of transitions described above hold for higher dimensions and for 
larger lattices. 

In summary, we have investigated the possibilities for intermediate-valence transitions 
in the one-dimensional spinless Falicov-Kimball model with a generalized type of hopping. 
We found that the valence transitions have a staircase structure almost independent of finite- 
size effects, which is maximally simplified with increasing U and q .  Thus for sufficiently 
large U and q the Falicov-Kimball model undergoes, in the pressure-induced case, only a 
few discrete intermediate-valence transitions, namely the transitions from an integer-valence 
ground state into an inhomogeneous intermediate-valence state and the transitions from one 
inhomogeneous intermediate-valence state into another inhomogeneous intermediate-valence 
state. 
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